

Coupled Iterative Refinement for 6D Multi-Object Pose Estimation

Lahav Lipson, Zachary Teed, Ankit Goyal and Jia Deng, Princeton University

Code: github.com/princeton-vl/Coupled-Iterative-Refinement

Stages 1 & 2: Detection and Pose Initialization

Features

We use a Mask R-CNN to produce a set of bounding boxes and labels for object candidates. We then render an image of the object at a translation inferred from the bounding box. Lastly, we directly regress an initial rotation and translation update.

Stage 3: Iterative Pose Updates

To refine a pose estimate, we use the pose to induce optical flow between the input image and the object rendered at, and around, our current pose estimate G_0 . An update module predicts revisions to the optical flow and pixelwise confidence weights. We then solve for a pose update which explains these flow revisions and confidence weights. This entire process is repeated until the pose converges to a good solution.

Lookup

Π

GRU

→ BD-PnP

The Solver

The solver (purple) minimizes the

Mahalanobis distance defined by r

and w. The solver also tries to find a

pose which aligns the render depth

is not provided, it is generated from

 \leftarrow). Our solver is fully differentiable,

which enables our method to learn w.

and sensor depth. If the sensor depth

the current pose estimate (See Figure

Coupled Refinement

Robustness (Left): Our refinement

method is robust to inputs with

Predicted confidence weights. The "Hot" pixels indicate surface features that are highly weighted in the pose optimization step. Our method has low confidence over texture-less regions and high confidence over textured ones, over thin structures, on edges, and on occluded areas.

Predicted high-confidence matches. In this figure, we apply non-max suppression to the confidence weights using a 5-pixel radius and then visualize the most confident predicted correspondences.